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EXECUTIVE SUMMARY

The U.S. nuclear industry faces a challenge in maintaining required levels of
safety while ensuring economic competitiveness to stay in business. Safety
remains a key parameter for all aspects of light-water reactor nuclear power plant
operations. Safety can become more economical by using a risk-informed
ecosystem, such as the one being developed by the Risk-Informed Systems
Analysis Pathway under the U.S. Department of Energy Light Water Reactor
Sustainability Program. This program promotes a wide range of research and
development activities to maximize both the safety and economic efficiency of
nuclear power plants through improved scientific understanding, especially given
many plants are now considering second license renewals.

The Risk-Informed Systems Analysis Pathway has two main goals: deploy
methodologies and technologies that better represent safety margins and cost and
safety factors and develop advanced applications that enable cost-effective plant
operation.

The Plant Reload Optimization Platform development project aims to build a
reactor core design tool that includes reactor safety and fuel performance
analyses and uses artificial intelligence to support the optimization of core design
solutions.

This report summarizes development and demonstration activities of the
Plant Reload Optimization Platform built in the Risk Analysis and Virtual
ENviroment, specifically:

¢ Improvement of multi-objective non-dominated sorting genetic algorithm
Il to handle large size of objectives and constraints

o Demonstration of pressurized-water reactor core design with the non-
dominated sorting genetic algorithm 1l multi-objective optimization
platform

e Single-objective, optimized core design, including system analysis and
fuel performance feedback.
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1. INTRODUCTION

The U.S. Department of Energy Light Water Reactor Sustainability Program Risk-Informed Systems
Analysis Pathway Plant Reload Optimization (PRLO) project aims to develop an integrated,
comprehensive platform offering an all-in-one solution for reactor core reload evaluations with a special
focus on optimizing the core design considering feedback from system safety analysis (i.e., thermal
hydraulics) and fuel performance. [1] The main driving force behind the optimization platform is the Risk
Analysis and Virtual ENvironment (RAVEN) developed by the Idaho National Laboratory. [2] RAVEN
leverages contemporary artificial intelligence techniques, including the genetic algorithm (GA). The GA
approach is an effective technology for optimizing fuel reloads. [3]

RAVEN?’s utility extends beyond optimization; it can generate input setups for multiple physical
simulation codes and carry out postprocessing of simulation outcomes. This versatility of RAVEN
enables seamless integration with other system codes related to core design, fuel performance, and
systems thermal hydraulic analysis. This capability to integrate multiple codes allows a comprehensive
framework that encompasses various physical phenomena. Consequently, RAVEN, acting as the
controller of the optimization algorithm, serves as an inclusive and user-friendly PRLO platform that
operates independently from specific tools.

The aim of this study is to create a unified and thorough PRLO platform that provides a complete
solution for reload assessments, particularly emphasizing fuel optimization in order to minimize the
guantity of new fuel and supporting better utilization of fuel that results in reduced volume of spent fuel.
This PRLO platform is an enhanced arrangement for the reactor core, meticulously designed based on
critical safety parameters that are essential to fulfill regulatory standards. Figure 1 illustrates the project’s
technology roadmap and research strategy spanning multiple fiscal years (FYs), comprising four distinct
phases of research and development.

Phase 1 (FY19-20) Phase 2 (FY21-22) Phase 3 (FY22-23) Phase 4 (FY24-26)
Methodology Framework Completion of Demonstration and
Development Improvement Development Expansion
Setup tools and methods Update tools and Maximize capability of Full-scale demonstration
P methods framework for PWR and BWR
. Optimization method for Integration of multi- Demonstration of ATF
Set plant-based scenarios . o .
fuel reloading pattern objective method with extended burnup
Simulate DBA with Demonstrate generic Economics benefit

Analyze uncertainties

deterministic method optimization framework analysis
Use fixed core loading Assess constraints and Analysis multi-physics
pattern issues of tools uncertainties Finalize framework for
the use to support plant
Evaluate recoverable Apply risk-informed Expand capability for reload evaluation
margin approach PWR with ATF
Planning & development Early demonstration Industry engagement Industry deployment

L Reaching higher maturity for industry
(utilities/vendors) engagement from 2021

Figure 1. Technology roadmap of PRLO project.
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Phase 1—Methodology Development (FY-2019 to FY-2020): Available tools and methods were
investigated and tested. Design-basis accident (DBA) scenarios were simulated via traditional
deterministic methods by using the Reactor Excursion and Leak Analysis Program (RELAPS5) 3D
thermal-hydraulics analysis code developed at Idaho National Laboratory. Simulations used fixed core
loading and evaluated recoverable margins.

Phase 2—Framework Improvement (FY-2021 to FY-2022): The key activities include:

e The demonstration of the PRLO platform for a generic pressurized-water reactor (PWR) using 10
limiting DBA scenarios

e The development and deployment of the optimization process using GA in RAVEN

e The development of an improved RAVEN infrastructure for the performance of neutronics and
thermohydraulic analyses

o The identification of limiting DBA scenarios for the evaluation of the transition from a deterministic
to risk-informed approach for fuel analyses.

Phase 3—Demonstration of Benefits (FY-2022 to FY-2023): The project continued the progression
through the demonstration phase where the framework was enhanced with additional and extended
capabilities to support regulatory-required fuel safety analyses and to allow additional economic benefits
from fuel reload optimization. The development and deployment of the multiobjective optimization
process using the Non-Dominated Sorting Genetic Algorithm 11 (NSGA-II) in RAVEN were completed,
and the developed NSGA-II optimization PRLO platform was demonstrated with a constrained
multiobjective optimization of a PWR core loading pattern.

Phase 4—Improvement and Expansion (FY-2024 to FY-2026): The framework capabilities will be
further demonstrated for full-scale analyses performed by nuclear power plants. Equilibrium scenarios
will be demonstrated for multiple reactor types (i.e., PWRSs, boiling-water reactors) as well as accident-
tolerant fuel (ATF) usage with extended burnup. Framework development will be finalized, and a
pathway will be established to deploy developed methods and tools to industry.

The major accomplishments in FY-2023 are:
e The development of a multiobjective optimization capability by integrating NSGA-I1 methodology
e The demonstration of new capabilities by successfully designing an optimized PWR core [4]

e The expansion of capabilities to high-burnup ATF for a PWR core design, including fuel performance
analysis for equilibrium fuel cycle and explicitly considered uncertainties [5]

e The initiation of an industrial pilot demonstration project with a utility partner (i.e., Constellation
LLC) and computer simulation tool vendor (i.e., Studsvik LLC).

Upon finalizing the research, the following benefits will be obtained from the developed PRLO
platform:

e The PRLO platform will significantly simplify the required process of core reload evaluation
performed for each fuel reload because it integrates all the required tasks into one seamless automated
process

e The PRLO platform will support flexible plant operations with increased or decreased reactor power
levels following the fluctuating demand driven by the integration of renewables

e The PRLO platform will be capable of performing all necessary evaluations of ATF, including the
optimization of core design.

The PRLO platform was developed to handle multiple objectives and constraints such as fuel cycle
length (e.g., an extension from 18 to 24 months), fuel enrichment, burnable poisons, core design limits
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(e.g., peaking factors and boron concentration), safety parameters (e.g., peak cladding temperature and
departure of nucleate boiling rate). To do this, the Risk-Informed Systems Analysis Pathway GA-based
PRLO platform uses the following individual computational tools coupled with RAVEN to provide safety
feedback during core designing:

e PARCS and SIMULATE-3K for core design
e RELAPS5-3D for system response analysis (i.e., thermal-hydraulic analysis)
e TRANSURANUS for fuel performance analysis.

Figure 2 gives a snapshot of the PRLO platform. Initial core design is given by RAVEN, and PARCS
or SIMULATE-3K generates the equilibrium core, which is the required input for RELAPS5-3D limiting
DBA analyses. Once the core design is found acceptable by RELAP5-3D analyses, fuel performance is
assessed by TRANSURANUS for a final confirmation of an acceptable core design. This process is
controlled by RAVEN along with an uncertainty analysis performed by RELAP5-3D. The choice of the
analytical tools herein is for demonstrative purposes. The PRLO platform is designed as “plug-and-play”
where individual tools can be replaced, provided the proper interfaces with RAVEN are developed. This
report describes coupling between RAVEN, SIMULATE-3K, and TRANSURANUS as well as presents
demonstrations verifying the developed NSGA-11 PRLO platform.

It is noted that usage of SIMULATE-3K is limited within the agreement with Studsvik LLC.

A
RAVEN
Genetic Algorithm

[Objectives]
* Max. energy production
* Min. fuel cost

[Constraints]
* Design limits
* Safety goals

* Core specification = EFPD, Burnup, HCF * DBA scenarios + Safety parameters * Fuel rod modeling * PCT, RIP, Oxidation
* Fuel inventory = Boron concentration ¢ Core map and data * PCT, DNBR, HTC e Core and TH data * FFRD related data
+ Perturbed input files » Additional metadata * Perturbed input files + Additional metadata * Perturbed input files + Additional metadata
Core Design System Analysis Fuel Performance
(e.g., PARCS and SIMULATE) (RELAP5-3D) (TRANSURANUS)
RA(/qEN Risk-Informed Multi-Physics Uncertainty Analysis

Figure 2. High-level flow chart of Light Water Reactor Sustainability Program developed PRLO
platform. [1]
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2. IMPROVEMENT OF MULTIOBJECTIVE OPTIMIZATION PLATFORM
2.1 Constraints Handling

Improving the NSGA-II multiobjective PRLO platform was focused on implementing the larger
constraints handling capabilities. Realistic fuel reload problem has larger number of constraints and their
violations will be also large. The high degree of violation of constraints increases complexity while
solving the multiobjective optimization problem (MOOP). To reduce such complexity, an augmented
objectives concept is introduced. [6] This concept includes a static penalty term inside of the objective to
reduce the degree of violation of the constraints which represents that the population will have lower-
level fitness in GA methodology. In other words, using the objective that already includes the violation
(i.e., static penalty) will ease handling large number of constraints and their violations.

The static penalty term, w;(x;), could be defined based on the degree of violation of the constraints
as:

_ (lgGal,  ifg(x) <0
i) = { 0, otherwise
where g(x;) is the degree of violation that is the function of difference between the constraints and actual
values.

For each constraint, a penalty weight, 2, (x;), could be given as:
m
Qi (xy) = Zpiwi(xi)
i=1

where P; is a penalty weight for each constraint.
The augmented objectives, f; (x;), is then:

fie ) = fie () + 2, (xp)

where f; (x;) is original objectives. The original objectives could be separated from augmented objective
once optimization is completed.

As an example, the problem is defined to find maximum fuel cycle length (i.e., EFPD?) with
minimum fuel cost, which is max-min MOOP. By using augmented objective concept, the problem could
be transformed into min-min MOOP by adding static penalty in each objective which has minimum
degree of violation of the constraints in each original objective. Figure 3 shows example of extracting
original objectives from augmented objective. ArtObjOne and ArtObjTwo are the two augmented
objectives, which included degree of violation of the constraints from two objectives fuel cycle length and
fuel cost. Once augmented objectives give a min-min MOOP value (left of Figure 3), original objectives
could be achieved by removing the degree of violation of the constraints (right of Figure 3).

1 Effective full power day
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fii ) = frlox) +2(x) fie(xi)
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Figure 3. Mapping of real objectives (right) from augmented objectives (left). ArtObjOne and ArtObjTwo
imply augmented objectives combining original objectives and degree of violation of the constraints.

2.2 Demonstration of Large Number Constraints Multiobjective
Optimization Problem

The multiobjective local sums problem was developed for the larger number of constraints handling
demonstration purpose. The demonstration involved a MOOP, the minimization and maximization of
multiple local sums with multiple constraints. Two different implicit constraints were set as a minimum
of 200 for f1(x) and at least 16 for f2(x). The general form of the problem solved in the demonstration can
be expressed as:

o Minimize fi(x) = Y8 ,ixx;

e Maximize f,(x) = Y2, i X x;

e Minimize f3(x) = Xf5i X x;

o Explicit constraint: x; + x, < 10
e Implicit constraint: f;(x) < 200
e Implicit constraint: f,(x) > 16

where x;~U%[2,9] is sampled from a discrete uniform distribution. Figure 4 shows examples of accepted
and eliminated solutions. For instance, solution x = (9,7,3, 2,8, 6,4,5) is an accepted solution that
satisfies all constraints. However, solution x = (4,5, 6, 3,7,9, 2,8) violates two implicit constraints, so
this solution will be eliminated during the survivor selection process.

15



X1 X2 X3 X3 X5 Xe X7 Xg X1 X2 X3 X4 X5 Xe X7 Xg

9 7 3 2 8 6 4 5

Objective Objective

AE) =1X9+2Xx7+3X3+4X2+5X8+6X6+7X4+8x%x5=184 i) =1x4+2X5+3x6+4X3+5Xx7+6X9+7x2+8x8=211
£x) =1x9+2x7=23 (X)) =1x4+2x5=14

fz(x) =3x3+4x2=15 fz(x) =3x6+4%x3=30
Constraints Constraints

xX3+x,=5<10 x3+x,=9<10

fi(x) = 184 < 200 A&
Constratint Violated!
f0=23>16 00 :

Chromosome accepted Chromosome eliminated

Figure 4. Exemplary solutions (accepted and eliminated) to the multisum problem with explicit and
implicit constraints.

Figure 5 and Figure 6 show the enhanced multisum model and implicit and explicit constraint models
in PRLO platform, respectively. The PRLO platform input deck for the multisum optimization problem is
given in Appendix B.

def evaluate({Inputs):
Sum = 8
LocalSuml = @
LocalSum2 = @

for ind,var in enumerate(Inputs.keys()):

Inputs[var]

if (ind = 2) E)H
Localsum2 + nd + 1) * Inputs[var]
return Sum[:], LocalSuml[:], LocalSum2[:]

def run{self,Inputs):

self.objl,self.obj2,self.obj3 = evaluate(Inputs)

Figure 5. Multisum model for larger number of constraints in PRLO platform.
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import numpy as

valuates the implicit constraint function at a given point/solution ($\vec(x)%)

@ In, Input, object, RAVEN container

@ Out, g(inputs x1,x2,..,output or dependent variable), float, implicit constraint evaluation function
the way the constraint is designed is that
the constraint function has to be »= @,
so if:
1)

{21 T L I <

constraint)

s assume that the constraint is:
$ %3+xd < 8 %

g the constraint evaluation function (which has to be > @) is t
8 - (x3+x4)
this case if g(\wvec(x)) < @ then this x violates the constraint
@ In, Input, object, R | container
@ out, g, float, explicit constraint 1 evaluation function

F expConstril{Input):

@ In, Input, object, RAVEN container
@ out, g, float, explicit constraint 3 evaluation function

g = 16 - Input.x3 - Input.x4
return g

F impConstril(Input):

The implicit constraint involves variables from the output space, for
dependent variable that is not in the optimization search space

In, Input, object, RAVEN container

out, g, float, implicit constraint 3 evaluation function

D ED ED W

g = 288 - Input.objl
return g

def impConstr2(Input):

The implicit constraint involwves variables from the output space, for example the objective v
a dependent variable that is not in the optimization search space

@ In, Input, object, RAVEN container

@ out, g, float, implicit constraint 3 evaluation function

= Input.obj2 - 16
turn g

Figure 6. Implicit and explicit constraint modeling in PRLO platform.

Figure 7 and Figure 8 show the multisum test results. In Figure 7, there are three pairs of scatter plots
(i.e., Objective 1 with respect to Objective 2, Objective 2 with respect to Objective 3, and Objective 1
with respect to Objective 3) over selected iterations. At Iteration 1, most chromosomes are violating either
one of the given constraints. As the number of iterations increases, only chromosomes that comply with
given constraints survived. Note that chromosomes in the Objective 1-Objective 2 plane showed a clear
tendency toward approaching the top-left corner since the NSGA-I1 algorithm is trying to minimize
Objective 1 at the same time that it maximizes Objective 2. Similarly, chromosomes in the Objective 2—
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Obijective 3 plane and chromosomes in the Objective 1-Objective 3 plane showed a clear tendency
toward approaching the bottom right corner and bottom left corner, respectively.

Ilteration 60 Iteration 20 Iteration 10 Iteration 5 Iteration 1

Rank 1 only
at Iteration 60

Figure 7.
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Table 1 shows parameters used for implementing NSGA-I1I in the PRLO platform for multisum
problem solving. A two points crossover and random mutator gave enough perturbation to the offspring
populations. The probabilities of crossover and mutation were set to 0.7 from the maximum value of 1.0.
This led to an increased level of diversity in the offspring populations.

Table 1. NSGA-II parameters for the multisum problem in PRLO platform.

Population size 50 Generation 60
Crossover type Two points crossover Mutation type Random mutator
Probability of crossover 0.7 Probability of mutation 0.7

Chromosomes at the Rank 1 frontier at Iteration 60 are the ones that cannot be dominated by other
chromosomes, and they are listed in Table 2. In Figure 8, the constraints change over iteration are shown.
One can find that the ranges of constraint values of population at an early iteration are wide, which
implies that some of chromosomes are violating some constraints. As the number of iterations increases,
every chromosome in population complies with constraint limits.

Table 2. A list of optimal solutions of the multisum problem after 60 iterations.

Chromosomes Obijectives Constraints

Xe X2 Xs Xa X5 Xg X7 Xg | Objl Obj2 Obj3 (1>?3:+x4) (2)%(1);[ ?6bJ2-
8 9 4 2 7 6 5 3 176 26 20 4 24 10
8 9 3 2 7 6 5 4 181 26 17 5 19 10
9 8 6 4 7 5 3 2 161 25 34 0 39

9 8 6 3 7 5 4 2 164 25 30 1 36

8 9 6 4 7 5 3 2 162 26 34 0 38 10
9 8 5 2 7 6 4 3 171 25 23 3 29

9 8 3 2 7 6 5 4 180 25 17 5 20

8 9 5 2 7 6 4 3 172 26 23 3 28 10
9 8 4 2 7 6 5 3 175 25 20 4 25

9 8 7 2 6 5 4 3 166 25 29 1 34

8 9 6 3 7 5 4 2 165 26 30 1 35 10
8 9 7 3 6 5 4 2 163 26 33 0 37 10
9 8 6 2 7 5 4 3 168 25 26 2 32 9
8 9 6 2 7 5 4 3 169 26 26 2 31 10
8 9 5 3 7 6 4 2 168 26 27 2 32 10
9 8 5 3 7 6 4 2 167 25 27 2 33

9 8 7 3 6 5 4 2 162 25 33 0 38
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3. DEMONSTRATION OF CORE DESIGN WITH MULTIOBJECTIVE
OPTIMIZATION
3.1 Problem Statement

A demonstration was performed for the constrained multiobjective optimization of a PWR loading
pattern. The goal is to minimize the fuel cost and maximize the cycle length, while complying with all
actual reactor design constraints. The target constraint values for the design are:

e Fg<21
e FAH <148
e Boron centration < 1300 ppm

The reactor used was a generic three-loop Westinghouse PWR with a 17 x 17 core model consisting
of 157 fuel assemblies with five different fuel types is given in Table 3. The fuel cost is calculated by
counting how many different fuel assemblies were used for the given loading pattern then multiplying
them by their corresponding unitary value as given in Table 3.

Table 3. Fuel assembly inventory for the initial PWR core.

Fuel type 1 2 3 4 5 6
Enrichment (wt%) Reflector 2 2.5 25 3.2 3.2
Burnable poison None None 16 Gd rods None 16 Gd rods
Unitary cost ($)? 0 2.69 3.25 3.25 4.04 4.04

Figure 9 shows the fuel assembly design with and without Gd burnable poison loading. An initial 1/4
core loading pattern with five different fuel types is illustrated in Figure 10.
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Figure 9. Pin map of a fuel assembly with (left) and without (right) Gd burnable poison loading.

2 https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx
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Fuel type Enrichment Count

Reflector 64
2.0wt % 33
25wt % 32

4 2.5wt %+ 16Gd rods 16
3.2wt% 44
3.2wt %+ 16Gd rods 32

Figure 10. A quarter symmetry of a core loading pattern.

3.2 Methodology

To reduce the complexity of the problem, a one-eight symmetry for the loading pattern was used and
encoded in a chromosome, as shown in Figure 11.

locf1]12|3[4|5]|6|7|8]9]10(11(12(13|14|15[16|17]|18]|19|20|22]|23|24[25|28|29
FA|4[3]12]2|2|2[3|3[412]2|2[2[5{4]6]2]|5]2[5|5[5]2[2]4]|3

12(13(14)15
1920|121
23[24125(26|27
29(30|3132
34135

W NN = [
R ISR N = Bl *‘|
=
J
(IR
©

Fuel type Enrichment
Reflector
2 2.0wt %
3 25wt %

4 2.5wt % + 16Gd rods

32wt %
3.2 wt % + 16Gd rods

Figure 11. Chromosome encoding a one-eight symmetry of PWR loading pattern.

A total of 35 positions were set with six different types of assemblies, including the reflectors.
Positions 21, 26:27, and 30:35 are fixed with reflectors leaving the rest of 26 chromosomes for the five
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different types of fuel assemblies. The loading patterns in a chromosome was encoded to SIMULATE-3K
from the PRLO platform input. The cycle length values were taken from the SIMULATE-3K output.

The constraints were handled as part of the optimization of two augmented objectives with a static
penalty term to account for the degree of violation of the constraints. As shown in the next equations,
ArtObjOne is the augmented cycle length objectives and ArtObjTwo is the augmented fuel cost
objectives.

m=3
ArtObjOne = —Cycle Length + Z wymax (0, penalty;)
j=1
m=3
ArtObjTwo = Fuel Cost + Z uymax (0, penalty;)
j=1

A minimization-minimization framework was used to keep the same expression for calculating the
degree of violation in both augmented objectives, thus a negative sign for the cycle length was used.

3.2.1 SIMULATE-3K-RAVEN Coupling Interface

A Python-3 interface was developed for RAVEN to generate inputs of SIMULATE-3K and extract
SIMUALTE-3K outputs for NSGA-11 optimizer execution in PRLO platform. This interface is designed
for the 17 x 17 PWR core design with 157 FAs.

The coupling interface has following files:
e SIMULATEInterface.py: Connects and interacts with RAVEN main module
e SIMULATEData.py: Collects and extracts data from SIMULATE output file, including:

e Time-dependent multiplication factor Kess

e Time-dependent Fq

e Time-dependent FAh

o Time-dependent critical boron concentration

e Cycle length determined by the critical boron concentration

e Time-dependent relative pin power distribution

e Number of FAs of each type

e Augmented objectives for cycle length and fuel cost.

To account for the degree of violation of constraints, “augmented” variables ArtObjOne and
ArtObjTwo are also extracted by the interface.

e SpecificParser.py: Generates SIMULATE input from information provided by RAVEN-GA
module.

The SIMULATE-3K/RAVEN interface needs the following three input files:

e Sim-3param.xml—Fuel assembly definition, cross section information and other specifications
for SIMULATE

e Cms.pwr-all.lib—Cross section information

e Input.inp—Template used by RAVEN to print input files for SIMULATE.
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3.2.2 Workflow for Core Optimization in RAVEN

The RAVEN xml input file was used to define the number of generations, population size, parent
selection, crossover, and mutation operator.

User input file sim3-param.xml was used to specify the characteristics of the PWR, such as the FAs,
cross-section libraries, and dimensions. RAVEN checks for any input error, then samples FA location
mapping, generating a SIMULATE-3K input file by using SimulateInterface.py. This file was also used
to execute SIMULATE-3K. By using SimulateData.py, RAVEN parses specified variables from the
SIMULATE-3K output file and was used as part of the NSGA-II optimizer. This whole process will be
repeated until the given number of iterations is completed. Figure 12 shows the flowchart of the
SIMULATE-3K and RAVEN coupling interface.

RAVEN
sampler

f

RAVEN /

Simulatelnterface.py SIMULATE

SimulateData.py

Figure 12. Flowchart of SIMULATE-3K/RAVEN coupling interface.

With the use of the augmented objectives, many simulations could be performed to determine the
penalty coefficients inclusive. Augmented objective functions with coefficients u; = wy; = 2,800
includes boron concentration coefficient j = 1. For augmented objective functions u, = w, = 700 and
us = w3 = 700 has peaking factor coefficient of j = 2 and j = 3, respectively. It is noted that, in the
augmented objectives, the weights assigned for each constraint are intuitively selected based on the
evaluation of the user and are heavily dependent on the nature of the problem. For the current
demonstration, the boron concentration is tightly related to the objectives, therefore a higher weight was
needed. One point crossover and tournament ranking were used in the crossover and selection operators,
respectively.

Figure 13 shows the PRLO platform input file (e.g., sim3-param.xml) to sample SIMULATE-3K
input files.
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Figure 13. User input file used by PRLO platform to sample SIMULATE-3K input files.

3.3 Optimization Results
3.3.1 NSGA-Il Optimization Results

NSGA-I1I cycle length and fuel cost optimization were performed for population size of 50 with 50
generations. Figure 14 shows the feasible region and Pareto front with optimized solutions. Generally,
convergence towards one region is observed as the number of iterations (i.e., generations) increases.
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Figure 14. Search space and feasible region (left) and Pareto frontier (right) for NSGA-I11 optimization
(population size = 50, generations = 50).

A total of 2,500 chromosomes encoding a loading pattern were generated in serial, from which 1,772
are unique. The feasible region, which contains chromosomes that comply with all the constraints, is
composed of 40 chromosomes, of which 11 are part of the Pareto frontier that could be the optimized
solution. The frontier values are identified as #1 from the lowest to #11 at the highest position. Figure 15
shows the lowest (#1) position of the Pareto frontier. The fuel cost was $499,450,000 with a fuel cycle
length of 364.10 EFPD.
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Cycle length (EFPD) 364.10
Fuel cost (M$) 499.45
B 2,092

CBC (ppm) 1295.6

Fp 1.479

350 355 360 365 370 375 380 385 390 395 400

Fuel type Enrichment
Reflector

2.0wt %

3 25wt%

4 2.5 wt % + 16Gd rods
3.2wt %
3.2 wt % + 16Gd rods

Figure 15. Sample Pareto optimal solution for NSGA-II run with population size of 50 and 50 generations

(Position #1).

Figure 16 and Figure 17 show the middle (#4) and highest (#11) positions of the Pareto frontier. The
fuel cost was $508,280,000 and $520,920,000 and the fuel cycle length of 373.80 EFPD and

383.50 EFPD, respectively.
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Figure 16. Sample Pareto optimal solution for NSGA-I1I run with population size of 50 and 50 generations

(Position #4).
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Figure 17. Sample Pareto optimal solution for NSGA-II run with population size of 50 and 50 generations
(Position #11).

The core loading pattern generated by the NSGA-II optimizer is very close to a realistic nuclear
reactor core shape: lower enrichment fuels in the inner region and higher enriched fuel in the outer region,
then another region of lower enriched fuel region, which establishes a low-leakage loading pattern. This
pattern is a typical core loading strategy of placing burned FAs in an outer core location to reduce neutron
fluence to the reactor core vessel, which extends the vessel lifetime and avoids pressurized thermal shock.

[7]
3.3.2 Sensitivity Study on the Population Size

A sensitivity study was conducted for the population size. An increased population size of 100 was
compared with a population size of 50. All other parameters remained same in both cases: selection,
crossover, mutation types, and number of generations (i.e., 50).

The results show a significant increase in the feasibility region and number of Pareto frontiers, as
shown in Figure 18 and Table 4. The number of total solutions was increased from 2,500 to 5,000, and the
possibility of generating a unique solution was increased from 70.88% to 93.4%. The optimized Pareto
frontier solutions were significantly increased from 11 to 77 solutions.

It could be concluded that an increased population size could generate better optimized core reloading
patterns. However, the computational burden would be increased as the population increased. The
simulation time was about 6.5 hours for 50 population size and about 16.5 hours for 100 population size.
While the objective (e.g., minimum fuel cost and maximum fuel cycle length) may converge to the user’s
goal, it is recommended to select a reasonable number of populations to reduce computational burdens.
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Table 4. Performance comparison with respect to population size in NSGA-II.

Population size

50

100

Total solutions generated (ec runtime if serial)

2,500

5,000

Unique solutions generated

1,772 /2,500 = 70.88%

4,670/5,000 = 93.4%

Feasibility regions share

40/2,500 =1.6%

903 /4,670 = 19.33%

Pareto front share

11/1,772 = 0.62%

77/4,670=1.65%

Simulation time 6hr 31m 56s 16hr 39m 46s

3.3.3 Comparison Between Single-Objective GA and Multiobjective NSGA-II

A comparison study was performed between single-objective GA and multiobjective NSGA-II
methods to verify the feasibility of the optimizer performance and efficiency. To handle multiple
objectives with the single-objective GA method, an artificial objective, C, was introduced, which is the
function of the fuel cost, C, and cycle length, L:

C=cC/L

Minimizing this artificial objective could be achieved through the minimum fuel cost and the
maximum fuel cycle length.

Figure 19 shows the feasible region and Pareto frontier from the single-objective GA optimizer. The
number of population size and generations were set to 50, which is same as the NSGA-I1 optimizer test in
Section 3.3.1. A total of 2,500 chromosomes encoding a loading pattern were generated in serial, of
which 1,154 are unique. The feasible region, which contains chromosomes that comply with all the
constraints, is composed of 14 chromosomes, of which six are part of the Pareto frontier, numbered from
#1 to #6.
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Figure 19. Search space and feasible region (left) and Pareto frontier (right) from single-objective GA
optimization (population size = 50, generations = 50).

The feasible region and Pareto frontier was found on the left side of the search space, which gives a
shorter fuel cycle length compared to the multiobjective NSGA-11 optimizer results shown in Figure 14,
which shows the Pareto frontier is located at the right side of the search space. Also, the NSGA-II method
produced more optimal solutions at the Pareto frontier (i.e., 11). This result shows the multiobjective
NSGA-II optimization method generated more acceptable result for the fuel reload problem.

Figure 20, Figure 21, and Figure 22 show the lowest (#1), upper-middle (#5), and highest (#6)
positions of the Pareto frontier from single-objective GA optimization solutions. The fuel cost was
$509,930,000, $516,550,000, and $518,760,000 and the fuel cycle length was 364.0 EFPD, 375.2 EFPD,
and 378.3 EFPD, respectively. The fuel cost was found to be generally higher than the similar fuel cycle

length case result of NSGA-II solutions.
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Figure 20. Sample Pareto optimal solution for GA run with population size of 50 and 50 generations
(Position #1).
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Figure 21. Sample Pareto optimal solution for GA run with population size of 50 and 50 generations
(Position #5).
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Figure 22. Sample Pareto optimal solution for GA run with population size of 50 and 50 generations
(Position #6).

Figure 23 shows a comparison of core loading patterns between the single-objective GA and
multiobjective NSGA-11 optimizers with a similar length of fuel cycle: 364 EFPD and 364.1 EFPD,
respectively. The fuel cost was about $10,000,000 less in the NSGA-11 optimizer result: $509,930,000
and $499,450,000, respectively. The fuel loading pattern of the NSGA-II result shows a better low-
leakage core design, which is the preferable option to actual fuel reloading applications.
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Fa 2.076 2.092
CBC (pcm) 1267.5 1295.6
Fas 1.459 1479

Figure 23. Comparison of GA and NSGA-II optimal loading patterns.
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4. OPTIMIZATION WITH MULTIPHYSICS FEEDBACK
4.1 Multiphysics Coupling

The main goal of the PRLO platform is to design an optimized reactor core which considers system
safety analysis and fuel performance, thus multiphysics methodology. The computational tools were
already coupled through RAVEN. [1] A weak coupling method was used since the tools has different
disciplines or multiphysics involved which means input and output data is controlled by RAVEN as
shown in Figure 2. In other words, the weak coupling method is suitable for multiphysics problem solving
which has different physical time orders between each tool. For instance, core design needs the core
physics data throughout the entire cycle duration (generally 18 or 24 months for the core depletion
calculation). In the meantime, system safety analysis by RELAP5-3D only needs a certain point of time
when accident has occurred. As an example of weak coupling in the PRLO platform, once potential
optimized core designs were proposed, RAVEN transfers necessary data to the system code (e.g.,
RELAP5-3D) for DBA analysis defined in the Nuclear Regulatory Commission’s NUREG-0800. [8]
Then again RAVEN transfers necessary data to the fuel safety analysis code (e.g., TRANSURANUS) to
confirm its performance and detail of failure mechanisms.

Typically, both normal operation, operational transients and anticipated operational occurrences
events are considered for the core design. [8] Power excursions may lead to xenon transients, which will
translate into a spectrum of power shapes and peaking factors that must be considered in the safety
analysis downstream.

4.1.1 Core-Physics Data

This section provides the breakdown of inputs that should come from the core design code. Pin power
histories (for every modeled pin) are needed. The breakdown of the TRANSURANUS input file contents
is shown in Figure 24 for a sample time step.

e Time-dependent, axially-dependent linear heat rate (W/mm)?3
e Time-dependent, axially-dependent fast flux (neutrons/cm?-s)
e Time-dependent steady-state system conditions*

e Coolant pressure

e Coolant temperature

e Coolant mass flow rate

e Thermal-hydraulic diameter of fuel rod channel.

3 A consistent set of axial power shapes between RELAP5-3D and the core physics tools need to be established.
4 These data could be entered manually into the RAVEN optimizer input file to be propagated into the TRANSURANUS input.
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Comments First column variable is a flag which denotes the type of
* a==g==ms Fom - start with “*" F-—oeoe o $mmmmmmme input that follows. The following variable options are
* burnup (MWd/kqU) : OTOOUD needed:
* time (h) : 0.000 _ q . .
* power (kW/m): 28.254 1-> P.nnt out options for time step (standard)
4 e e e 2 -> Linear Heat Rate (W/mm)

0-r0600006000000D-+04 3 -> Fast Neutron Flux (neutrons/cm?-s)
30 -> Plot option for time step (standard)

Eo —— B e e -t -t -t
0.26110 0.59301  0.66265 0.723| 4 -> Coolant Flow Rate (g/h)
0.87931 1.01995 1.06379 1.106| 9 -> Coolant Temperature (deg-C)
1.22001 1.30635 1.32696 1.341 10 -> Coolant Pressure {MPE)
1.34275 $.22330 1.12521 0.97

3 1 00000000D+14

s Sttt Fm——m———— N ——— e e T Sttt Sl e —— - —
0.26110 37711 0.59301 52 .72366  0.774 Second column is flag indicating whether or.
0.87931 92719 1.01995 .10632  1.144 not an axial shape is expected for the input.
1.22001 1.30635 1.32696 1.3

% 18 > Hydraulic Diameter of Channel (mm)

6 1.34
1.223300 1.12521 0. 9 0.75

.0000000000000D+00

Value of 1 indicates that an axial shape will
be input, value of 0 indicates to the code

4 4970000000000D+06 that an axial shape will not be input. For

9 -2£00000000000D+0 variables where an axial shape is required
= :igaooogggggggg:gi and this flag is 0, the axial shape of the
previous time step is used by the code.

Axial shape for time Fourth column is value for
dependent input variable. input parameter.

Figure 24. Sample interface file for TRANSURANUS from core design.

4.1.2 Thermal-Hydraulics Data

The RELAP5-3D input needs axial power shape of the reactor core. In general, the power shape is
calculated based on the reactor design data from the literature (e.g., FSAR) or from core design
computational tools. For PRLO platform a new approach was used for the RELAP5-3D input. This
approach obtains the power shape information from the core design tool and distills it into peaking
factors, which are then used to define axial power shapes to feed to the RELAP5-3D simulation. The
peaking factors may also become constraints managed in the outer optimization algorithm. The two key
peaking factors are defined in this section.

4.1.2.1 Fq Limit

The peaking factor, Fg, represents the ratio of the maximum local power density to the core average
power density. This peaking factor is intended to establish a limit on the linear heat rate experienced in
the core, and it is important for many considerations, such as peak cladding temperatures, fuel centerline
temperatures, departure of nucleate boiling rate, etc. For safety analysis applications, Fq is defined as:

— N .pN . pE
FQ — FQ * FU * FQ
Fo = max(P,(2) - Fyy(2)) - F - F§
where:
P,(z) = Core average axial power distribution
Fyy,(z) = Ratio of the local peak power density to core-average density at z

F} =1.05 (added 5% for conservativism)
F§ = 1.03 (engineering heat flux channel factor)

Using this definition, a constraint on Fq may be derived from a safety limit value of 2.5. Considering
conservatisms and engineering heat flux channel factor, the design limit value is 2.31. [9]
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4.1.2.2 FAH Limit

The enthalpy rise hot channel factor, FAH, represents the ratio of the integral of linear power along

the fuel rod with the highest integrated power to the average rod power and is defined as:

N _ N N
Fap = FAHmeasured Fy

where:

EN, = The value used in safety analyses

FN, = The value obtained from core design
measured

FY = 1.04 (typical measurement error)

Using this definition, a constraint on FAH could be derived from a typical safety limit value of 1.7.

The design limit is 1.635 by dividing with typical measurement error. [9]

Taking the peaking factors from the core design outputs, RELAP5-3D simulations could be

performed for a certain point of time of operation when accident occurred. Once the system response is
calculated with RELAP5-3D, system thermal-hydraulic conditions are extracted from RELAP5-3D
results and fed to TRANSURANUS. This was done using a method wherein the time-dependent
TRANSURANUS cards are assembled as:

The core design outputs are used to create the time-dependent TRANSURANUS cards at the intervals
specified in the core design outputs up until the time in the cycle at which the transient is determined
to occur.

A new time-dependent TRANSURANUS card is added and interpolated to the exact time in cycle of
the transient.

Time-dependent TRANSURANUS cards are added for the RELAP5-3D time steps. The flux and
power values from the last core design-based card are scaled by the power percentage from RELAP5-
3D, and the thermal-hydraulic inputs are taken directly from RELAP5-3D.

Detail of above each step is not publicly available.

4.1.3 TRANSURANUS Output

The primary output of a TRANSURANUS calculation provide information about the integrity of the

fuel and cladding information such as fuel centerline temperature, fuel rod swelling, rod internal pressure,
temperature, cladding oxidation and cladding strain. The information is also important to predict cladding
deformation, fuel failure, relocation and dispersal (i.e., FFRD), cladding oxidation and cladding failure by
rupture.

During a LOCA, the cladding will further oxidize due to an exothermic reaction between the cladding

and steam. The run-away reaction is controlled by regulatory limits imposed by the maximum peak clad
temperature (2,200°F of 10 CFR 50.46 acceptance criteria). The transient local oxidation can also be
calculated by TRANSURANUS. Note that, in case of cladding burst, double-sided oxidation may occur,
and that calculation would also need to account for clad thinning due to the computed strain.

Figures of merit were selected from the TRANSURANUS output to be processed in RAVEN. These

include the fuel cladding deformation and assembly rod (i.e., fuel pin) pressure. These figures of merit
allow for the RAVEN optimization to factor in safety concerns of ballooning and rod limitations for the
refuel design.

4.1.4 RAVEN-TRANSURANUS Coupling Interface

The RAVEN-TRANSURANUS coupling interface was built to allow the PRLO platform to control

TRANSURANUS for the following simulations and executions:
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Standalone TRANSURANUS execution with keyword substitution of sampled variables or upstream
variables and prebuilt time-dependent cards

TRANSURANUS execution with keyword substitution downstream of PARCS execution with time-
dependent cards built based on the PARCS output

TRANSURANUS execution with keyword substitution downstream of RELAP5-3D execution with
some prebuilt time-dependent cards and time-dependent cards built based on the RELAP5-3D output

TRANSURANUS execution with keyword substitution downstream of PARCS execution and
RELAP5-3D execution with time-dependent cards built based on a combination of PARCS and
RELAP5-3D.

In all cases, the output is collected using the TuPlot module, which is a module program included

with TRANSURANUS. The interface uses keyword substitution, which requires a RAVEN variable
name, a keyword string to search in the deck, and the format of the line that contains the keyword. Note
that there are no limitations on the keyword format, the analyst should be careful to use a unique string.
This is because TRANSURANUS has some limited input spaces that do not allow every convention to fit
as shown in Figure 25.

<variable name='rab'>

<keyword>$rab</keyword>
<format>8F10.5</format>
</variable>
<variable name='korngr'>
<keyword>$korngr</keyword>
<format>8F10.5</format>
</variable>

* HEADER: FTELL: 3483 % VALUES: rib, rab, rih, rah,raubl (lschni),rauhl (lschni) % FORMAT: 8F10.5
0.0 Srab 4.72000 5.43000 0.00160 0.0003
* HEADER: FTELL: 3564 % VALUES: aeax6,ikorn % FORMAT: 16I5
0 0
* HEADER: FTELL: 3645 % VALUES: korngr (1,1,1) % FORMAT: 8F10.5
Skorngr

Figure 25. Example of keywords in TRANSURANUS input file.

The different use cases for the TRANSURANUS interface and how the TRANSURANUS time-

dependent cards are constructed are shown in Figure 26. The number of pins simulated can be input
according to these guidelines. In the cases of standalone TRANSURANUS or RELAP5-
3D+TRANSURANUS coupled simulation, there is a single TRANSURANUS simulation (i.e., one fuel
pin) executed. In the cases of PARCS+TRANSURANUS or PARCS+RELAP5-3D+TRANSURANUS
coupled simulation, the user may specify any number of pin locations in the core (based on assembly row,
assembly column, pin row, and pin column). A simulation needs to be performed for each location
specified.

For output collection, the user must supply a TuPlot input file. The outputs are saved back to RAVEN

with the following conventions of standalone TRANSURANUS or RELAP5-3D+TRANSURANUS
coupled simulation, DNx_CNy_ASz, where:

DNX stands for diagram number x. This is a naming convention based on the TRANSURANUS Plot,
which a TRANSURANUS analyst will be familiar with. Diagram numbers inform the user of
information such as “what quantity is being printed?”

CNY stands for curve number y. This is a naming convention based on TRANSURANUS Plot, which
a TRANSURANUS analyst will be familiar with. Curve numbers inform the user of information such
as “what is the specific variable being printed?”

ASZ stands for axial slice z. Axial slices are the TRANSURANUS naming convention for the axial
levels in the simulation.
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For PARCS+TRANSURANUS or PARCS+RELAP5-3D+TRANSURANUS coupled simulations,

ARa_ACb PRc PCd _DNx_CNy_Asz are defined as:

DNx_CNy_Asz is described above
ARa stands for assembly row a
ACD stands for assembly column b
PRc stands for pin row ¢

PCd stands for pin column d

TU Only PARCS + RELAP + PARCS +
TU TU RELAP + TU
PARCS-based
TD Cards (cut off
at time in cycle)

PARCS- RELAP- RELAP-
based TD based TD based TD
Cards Cards Cards

Figure 26. Different methods of building time-dependent TRANSURANUS cards.

The interface coding is briefly described below. The RAVEN interface consists of one Python class

titled TRANSURANUS. The class is comprised of multiple methods:

Method _ init  :Thisisa required constructor method, which leverages the base class
constructor.

Method readMoreXxML: This allows the portion of the xml input with specialized class and
initialize attributes based on inputs.

Method parseParcs: Obtains values from the PARCS outputs for input to TRANSURANUS,
including time steps, linear heat rates, fast neutron fluxes, flow rate, and coolant temperatures.

Method parseRelap: Obtains values from the PARCS outputs for input to TRANSURANUS,
including thermal-hydraulic time steps, power fractions, flow rate, coolant temperatures, and coolant
pressures.

Method subValues: Creates the perturbed TRANSURANUS input file excluding the time-
dependent cards. Note that this method includes logic to handle various fixed format statements.

Method addTdParcsCards: Adds time-dependent PARCS cards to the rod-specific
TRANSURANUS file, as described earlier in this section.

Method addTdRelapCards: Adds time-dependent RELAP5-3D cards to the rod-specific
TRANSURANUS file, as described earlier in this section. Note that this includes logic to interpolate
the existing PARCS cards to the exact time in the cycle that the RELAP5-3D simulation is
determined to start at.

Method readOutputs: Reads the TuPlot outputs to create the output data to send back to
RAVEN.
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e Method createNewInput: Calls other methods and does miscellaneous processing to create an
input file in a subdirectory for each rod being simulated.

e Method generateCommand: Creates and executes a script to change into a rod-specific
directory, execute TRANSURANUS and TuPlot, then exits the directory. Note that this method was
used because RAVEN does not have the capability to embed RAVEN-running-RAVEN more than
two processes deep. The existing setup already used RAVEN-running-RAVEN, and thus the
separating running of TRANSURANUS for each rod was handled this way.

e Method finalizeCodeOutput: Collects the outputs from each individual rod run and saves
into one common CSV file with labeled assembly and rod coordinates.

4.2 Demonstration with Large-Break Loss-of-Coolant Accident Case

4.2.1 Problem description

A demonstration was performed with a LBLOCA to verify the correct workflow between PARCS,
RELAP5-3D, and TRANSURANUS with a single objective (i.e., maximize fuel cycle length, effective
full power day, EFPD) PRLO platform. The Zion NPP RELAP5-3D LBLOCA model was used. [8]

The reactor core has 157 fuel assemblies of 17 x 17 fuel configurations as shown in Figure 9. Each
fuel assembly has five different fuel types as given in Table 3. The objective is to find the maximum fuel
cycle length (i.e., EFPD). A single constraint was set as follows:

e Peak cladding temperature (PCT) < 1,800 F

Other reactor design parameters (e.g., Fo < 2.1, FAH < 1.48 and Boron centration < 1300 ppm) were
not set as problem constraints because this test is designed for the verification purpose of the multiphysics
PRLO platform.

The setting of PRLO platform is shown in Table 5. Description of the option values are given in the
reference. [8] Monte Carlo sampling method was used to select initial 5 random chromosomes (i.e., 5
different core configurations). Each population has 5 chromosomes, and 10 populations were given (i.e.,
total of 50 different core configurations) for each generation. Optimization ends when 10" generation was
obtained.

Table 5. Setting of PRLO platform for multiphysics optimization demonstration.

Parameters Value

Single objective Maximum EFPD
Single constraint PCT < 1,800 F
Number of chromosomes 5

Number of populations 10

Number of generations 10

Parent selection method Roulette
Crossover operation method One point
Mutation operation method Random
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Figure 27 shows data flow in demonstration of multiphysics single objective optimization. Each step
of the optimization process is given as follows:

e PRLO platform generates initial shuffled core and PARCS produces power distribution data and
EFPD.

e PRLO platform generates RELAPS5-3D input with peak power location from PARCS power
distribution data and run to check PCT during LBLOCA is under 1,800F.

e Ifabove PCT condition is met, PRLO platform generates TRANSURANUS input from RELAP5-3D
(e.g., PCT) and PARCS (e.g., power distribution) to simulate cladding deformation.

e Simulation ends when 10" generation is calculated.

A
RAVEN
Genetic Algorithm

[Single Objective] [Single Constraint]

Maximize fuel cycle length PCT < 1,800F

 Core specification = EFPD * LBLOCA input * PCT - Fuel / cladding data = PCT, Oxidation
*+ Fuel inventory » Power distribution * Peak power location + Cladding behavior g * Cladding behavior

Core Design System Analysis Fuel Performance
(PARCS) (RELAP5-3D) (TRANSURANUS)

Figure 27. Schematic diagram of data flow in multiphysics single objective optimization demonstration.

4.2.2 Results and discussion

Figure 28 shows evolution of EFPD during multiphysics optimization demonstration which shows
value of 542.8585 at the end of iteration. During the simulation, PCT was converged into given constraint
(e.g., PCT < 1,800 F) after 22" iteration. Other design criteria such as Fg, FAH and boron concetration, as
shown in Figure 29, were found higher than design limitations since these criteria were not set as the
constraints in this demonstration case. Figure 30 shows the core configuration, PCT and cladding
deformation value at 1%, 22" and the final iteration which is optimized core during this multiphysics
optimization demonstration. From the PCT graph, the maximum value was found lower than constraint
At the final iteration, it is clear to obeserve that PCT was found lower that given constraint.

It is noted that the results shown in Figure 28, Figure 29 and Figure 30 does not correctly represents
realistic behavior of PWR since this demonstration aims to verify multiphysics PRLO platform is
correctly working. Actual reactor problem will be performed in upcoming years.
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Figure 28. Evolution of EFPD and PCT during multiphysics optimization demonstration.
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5. SUMMARY AND FUTURUE WORKS

The NSGA-I11 optimizer was improved to handle a large number of constraints by using an augmented
objectives methodology and was tested within the PRLO platform. The PRLO platform is now fully
capable of handling realistic problems of artificial-intelligence-based reactor core designing.

The demonstration was performed with constrained multiobjective optimization of a 17 x 17 PWR
core loading pattern to minimize fuel cost and maximize fuel cycle length. Five different fuel enrichments
were initially given, including Gd burnable poisons. The SIMULATE-3K to RAVEN coupling interface
was built and tested for NSGA-I11 optimizer. Actual reactor design parameters were applied as constraints,
and an augmented objectives method was used. Optimization with population and generation sizes of 50
provided reasonable results, including a low-leakage core configuration, which is preferable for a realistic
core loading pattern. From the sensitivity study on the population size, a larger (i.e., 100) population case
generated significant improvements in potential optimal solutions. Compared with the single-objective
GA optimizer with an artificial objective function, the multiobjective NSGA-11 optimizer shows better
results in both the generation of optimized solutions and realistic reloading pattern.

The multiphysics (i.e., core design, thermal-hydraulics and fuel performance) PRLO platform was
demonstrated for the verification purpose. RAVEN was modified and tested to control input and output
data flow from RELAP5-3D and TRANSURANUS in PRLO platform. The demonstration was only
performed with a single-objective GA optimizer with single constraint to verify the feedback effect is
correctly applying. Further research will be continued for full-scale PWR DBA scenarios with a
constrained multiobjective NSGA-II PRLO platform.

Future activities planned for FY-2024 are:

e Conduct a full-scale demonstration of a PWR core design to minimize the volume of new fuel,
including core and system safety analysis considerations.

o Develop additional capabilities of the multiobjective optimization methodology by applying adaptive
algorithms, termination criteria, and constraints; these improvements are necessary to integrate
thermal-hydraulics and fuel performance inputs into the core design process.
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Appendix A
RAVEN Input for Multisum Optimization Problem

<?xml version="1.0" ?>
<Simulation verbosity="debug" profile="jobs">
<TestInfo>
<name>\raven\tests\framework\Optimizers\NSGAI
I\discrete\constrained\</name>
<author>Junyung Kim, Mohammad Abdo </author>
<created>2022-12-21</created>
<classesTested/>
<description>NSGA-II min-min test
</description>
</TestInfo>

<RunInfo>
<WorkingDir>Multi_MinwoReplacement_Complex_23
0807_pop50_60</WorkingDir>
<Sequence>optimize,print</Sequence>
<batchSize>4</batchSize>
</RunInfo>

<Steps>
<MultiRun name="optimize" re-seeding="2286">
<Input class="DataObjects"
type="PointSet">placeholder</Input>
<Model class="Models"
type="ExternalModel">myLocalSum</Model>
<Optimizer class="Optimizers"
type="GeneticAlgorithm">GAopt</Optimizer>
<SolutionExport class="DataObjects"
type="PointSet">opt_export</SolutionExport>
<Output class="DataObjects"
type="PointSet">optOut</Output>
<Output class="OutStreams"
type="Print">opt_export</Output>
</MultiRun>
<IOStep name="print">
<Input class="DataObjects"
type="PointSet">opt_export</Input>
<Input class="DataObjects"
type="PointSet">optOut</Input>
<Output class="OutStreams"
type="Print">opt_export</Output>
<Output class="OutStreams"
type="Print">optOut</Output>
</I0Step>
</Steps>

<Models>
<ExternalModel
ModuleToLoad="../myLocalSum_multi.py"
name="myLocalSum" subType="">
<variables>x1,x2,x3,x4,x5,x6,x7,x8,0bjl,,0b
j2,0bj3</variables>
</ExternalModel>
</Models>

<Functions>
<External file="../myConstraints.py"
name="expConstr3">
<variables>x1,x2,x3,x4,x5,x6,x7,x8</variabl
es>
</External>
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<External file="../myConstraints.py"
name="impConstr4">
<variables>x1,x2,x3,x4,x5,x6,x7,x8,,0bj2</v
ariables>
</External>
<External file="../myConstraints.py"
name="impConstr5">
<variables>x1,x2,x3,x4,x5,x6,Xx7,x8,0bjl</va
riables>
</External>
</Functions>

<Distributions>
<UniformDiscrete name='woRep_dist'>
<lowerBound>2</lowerBound>
<upperBound>9</upperBound>
<strategy>withoutReplacement</strategy>
</UniformDiscrete>
</Distributions>

<Optimizers>
<GeneticAlgorithm name="GAopt">

<samplerInit>
<limit>60</1limit>
<initialSeed>42</initialSeed>
<writeSteps>every</writeSteps>
<type>min, max, min</type>

</samplerInit>

<GAparams>
<populationSize>50</populationSize>
<parentSelection>tournamentSelection</par
entSelection>
<reproduction>
<crossover type="twoPointsCrossover">
<crossoverProb>0.7</crossoverProb>
</crossover>
<mutation type="randomMutator">
<mutationProb>0.7</mutationProb>
</mutation>
</reproduction>
<fitness type="rank_crowding">
</fitness>
<survivorSelection>rankNcrowdingBased</su
rvivorSelection>
</GAparams>
<convergence>
<AHDp>0.0</AHDp>
</convergence>
<variable name="x1">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x2">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x3">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x4">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x5">



<distribution>woRep_dist</distribution>
</variable>
<variable name="x6">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x7">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x8">
<distribution>woRep_dist</distribution>
</variable>
<objective>objl, obj2, obj3 </objective>
<TargetEvaluation class="DataObjects"
type="PointSet">optOut</TargetEvaluation>
<Sampler class="Samplers"
type="MonteCarlo">MC_samp</Sampler>

<Constraint class='Functions'
type="External'>expConstr3</Constraint>

<ImplicitConstraint class='Functions'
type="External’'>impConstr4</ImplicitConstraint>

<ImplicitConstraint class='Functions'
type="External’'>impConstr5</ImplicitConstraint>

</GeneticAlgorithm>
</Optimizers>
<Samplers>
<MonteCarlo name="MC_samp">
<samplerInit>
<limit>50</1limit>
<initialSeed>050877</initialSeed>
</samplerInit>

<variable name="x1">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x2">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x3">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x4">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x5">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x6">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x7">
<distribution>woRep_dist</distribution>
</variable>
<variable name="x8">
<distribution>woRep_dist</distribution>
</variable>
</MonteCarlo>
</Samplers>

<DataObjects>
<PointSet name="placeholder"/>
<PointSet name="optOut">
<Input>x1,x2,x3,x4,x5,x6,Xx7,x8</Input>
<Output>objl,,0bj2,0bj3</Output>
</PointSet>
<PointSet name="opt_export">
<Input>trajID</Input> <Output>x1,x2,x3
,%x4,x5,x6,x7,x8,0bjl,,0bj2,0bj3,age,batchId,rank,

CD,ConstraintEvaluation_expConstr3,
ConstraintEvaluation_impConstr4,ConstraintEvaluat
ion_impConstr5,fitness,accepted </Output>

</PointSet>
</DataObjects>
<OutStreams>
<Print name="optOut">
<type>csv</type>
<source>optOut</source>
</Print>
<Print name="opt_export">
<type>csv</type>

<source>opt_export</source>
<clusterLabel>trajID</clusterLabel>
</Print>
</OutStreams>
</Simulate>
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